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SUMMARY 
The steady, incompressible Navier-Stokes (N-S) equations are discretized using a cell vertex, finite volume 
method. Quadrilateral and hexahedral meshes are used to represent two- and three-dimensional geometries 
respectively. The dependent variables include the Cartesian components of velocity and pressure. Advective fluxes 
are calculated using bounded, high-resolution schemes with a deferred correction procedure to maintain a compact 
stencil. This treatment insures bounded, non-oscillatory solutions while maintaining low numerical diffusion. The 
mass and momentum equations are solved with the projection method on a non-staggered grid. The coupling of 
the pressure and velocity fields is achieved using the Rhie and Chow interpolation scheme modified to provide 
solutions independent of time steps or relaxation factors. An algebraic multigrid solver is used for the solution of 
the implicit, linearized equations. 

A number of test cases are anlaysed and presented. The standard benchmark cases include a lid-driven cavity, 
flow through a gradual expansion and laminar flow in a three-dimensional curved duct. Predictions are compared 
with data, results of other workers and with predictions from a structured, cellcentred, control volume algorithm 
whenever applicable. Sensitivity of results to the advection differencing scheme is investigated by applying a 
number of higher-order flux limiters: the MINMOD, MUSCL, OSHER, CLAM and SMART schemes. As 
expected, studies indicate that higher-order schemes largely mitigate the diffusion effects of first-order schemes but 
also shown no clear preference among the higher-order schemes themselves with respect to accuracy. The effect of 
the deferred correction procedure on global convergence is discussed. 
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1. INTRODUCTION 

Motivation and objective 

Many practical CFD problems involve incompressible flow in complex, three-dimensional geometries. 
Examples include serpentine ducts, curved turbomachinery parts and curved intemals in fossil fuel 
burners. The need to model flows in these geometries has motivated the development of computational 
algorithms for non-orthogonal and unstructured grids. Over the last decade, much progress has been 
made in reaching that goal. The present work attempts to implement and extend some of the more 
promising features of a number of previous works with the objective of developing accurate, efficient 
and robust algorithms for the solution of the N-S equations for general two- and three-dimensional, 
unstructured and non-orthogonal meshes. 

Background 

To facilitate a systematic review, the current topic will be divided into a number of constituent parts: 
(i) spatial discretization method (finite volume, finite element, etc.), (ii) advection differencing scheme, 
(iii) pressure-velocity coupling method and (iv) overall solution algorithm. 
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Spatial discretization methods. Finite volume (FV) and finite element (FE) methods have been the 
most widely applied methods. FV methods have the advantage that they are strictly conservative and are 
somewhat more intuitively based than FE methods. In recent years, however, some aspects of the 
formulations have become indistinguishable. Barth' has shown the equivalence of the Galerkin FE and 
cell vertex FV formulations of the Laplacian and Hessian operators on linear triangular and tetrahedral 
cells. Similarly, total variational diminishing (TVD) schemes for advection terms are now being equally 
applied to both FE and FV formulations. 

For FV formulations, two basic grid arrangements have been used: cell-centred and cell vertex 
arrangements. Cell-centred arrangements have been predominantly applied to curvilinear and general 
co-ordinate formulations, both orthogonal and non-orthogonal. While such formulations permit meshes 
which conform to curved boundaries, they are typically restricted to structured or block-structured grids, 
which limit coarse-to-he grid transitions. In contrast, both cell-centred2 and cell vertex3 arrangements 
have been applied to unstructured, non-orthogonal meshes using Cartesian components of velocity or 
momentum as dependent variables. These formulations not only support grids which conform to 
complex boundaries, but also permit grid transitions needed to accurately capture steep solution 
gradients. Although cell vertex arrangements are typically used for unstructured meshes, cell-centred 
arrangements are equally valid and neither arrangement presently shows clear superiority over the 
other. 

Advection differencing schemes. Regardless of the general discretization procedures, special 
treatment of the advective flux is required to simultaneously provide accuracy, boundedness and 
stability. Lower-order methods such as the upwind or hybrid schemes are bounded and stable but are 
also highly diffusive. In contrast, early higher-order schemes such as QUICK4 are more accurate but 
lack boundedness. Many remedies have been proposed. A common approach involves flux blending, in 
which an antidiffusive flux is added to a stable first-order scheme or a diffusive flux is added to an 
accurate but unbounded higher-order scheme. Although often effective, flux-blending schemes tend to 
be computationally complex and expensive and/or they often fail to provide the balance between 
accuracy and boundedness.* An alternative and more attractive approach is the family of high-resolution 
(HR) flux limiters. These schemes are based on composite flux expressions which insure boundedness 
in regions of sharp gradients and also provide high resolution in monotonic regions. The total variational 
diminishing (TVD) schemes of the compressible flow community are examples of this type of 
scheme. 

Pressure-velocity coupling. The primitive variable solution of the incompressible N-S equations is 
complicated by the relationship of the dependent variables. The momentum equations contain gradients 
of pressure which are not expressible in terms of the velocity components, and the pressure is indirectly 
linked to the continuity equation through the velocity field. The collocation of pressures and velocities 
with the use of central differencing leads to a decoupling of the velocity and pressure fields which may 
introduce oscillations in the pressure solution (i.e. checkerboard pressure field). Early remedies to the 
problem employed staggered grid arrangemenk6 The increased complication of implementing a 
staggered grid arrangement on non-orthogonal and unstructured meshes motivated the development of 
pressure-velocity coupling methods for non-staggered or collocated grids. Popular methods include 
Rhie and Chow interpolation7 and artificial dissipation schemes.839 In artificial dissipation schemes, 
second- and/or fourth-order smoothing terms are added to the momentum equations; however, these 
terms often corrupt the accuracy of the overall scheme and a debate still remains on the best approach to 
construct the dissipation operators. The Rhie and Chow method involves a special interpolation 
procedure for cell face velocities. The success of the method may be attributed to the fact that the 
staggering idea is implicitly adopted." Rhie and Chow interpolation with a modification by 
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Majumdar" has exhibited the same accuracy and convergence characteristics as the staggered grid 

Solution algorithms. Typical methods for solving the coupled equations include projection, 
pseudocompressibility and coupled methods. For practical problems, hlly coupled approaches are 
hampered by large storage and computational requirements, although block implicit methodsI5 mitigate 
this problem somewhat but at a the cost of reduced spatial coupling. Pseudocompressibility methods 
have gained some popularity because they are natural extensions of explicit compressible time-stepping 
schemes which do not require the implicit solution of a pressure Poisson equation of projection 
methods. However, the reliability and convergence characteristics of these methods are largely 
dependent on the chosen value of the compressibility factor.16 Also, the advent of algebraic multigrid 
solution algorithms has simplified the implicit solution of the pressure Poisson equation. 

Current approach 

In the current algorithm the incompressible Navier-Stokes (N-S) equations are spatially discretized 
using a cell vertex k i t e  volume method. Advective fluxes are calculated with bounded, high-resolution 
differencing schemes. The coupling of the pressure and velocity fields on the non-staggered grid is 
achieved using the Rhie and Chow interpolation scheme' with an extension due to Majumdar" to 
provide solutions independent of relaxation factors or time steps. The mass and momentum equations 
are solved with a single-step projection method. An algebraic multigrid solver is used for the solution of 
the implicit, linearized equations. Flux calculations are performed using a cell edge data structure to 
facilitate vectorization. 

Section 2 outlines the mathematical formulation in which the governing Navier-Stokes equations, the 
discretization procedure and the flow algorithm are presented. Section 3 presents computational results 
for three examples. Finally, Section 4 summarizes the work, states conclusions based on the example 
cases and recommends future directions. 

2. MATHEMATICAL FORMULATIONS 

2. I. Governing equations 

For ease of presentation the solution procedure is outlined for two-dimensional space. The transient, 
incompressible, conservation equations for mass, momentum and a scalar quantity are given as 

where Q is the dependent variable vector, 
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F’ and G’ are elements of the row matrix of the inviscid fluxes, 

FV and GV are elements of the row matrix of the viscous fluxes, 

and S is the volumetric source vector. U and V are the Cartesian velocity components in the x- and y- 
direction respectively, p is the static pressure, 4 is a scalar quantity, p is the gas density, r is the 
molecular dibivity and 7 is a stress tensor. The transient terms have been included as a means of 
applying relaxation in pursuit of a steady state solution. Time-accurate solutions are not of prime 
importance. 

2.2, Geometrical basis 

In the cell vertex form of the finite volume method (FVM) the nodes of the control volumes are 
located at the vertices of the elements. This type of discretization is similar to the control-volume-based 
finite element and the subdomain weighted residual method” in the finite element 
community. 

The grid is formed by dividing the spatial domain into a number of non-overlapping elements as 
shown in Figure 1. In the present work, quadrilateral (four-node) and hexahedral (eight-node) 
isoparameteric elements from the Lagrange family are used to represent two- and three-dimensional 
domains respectively. The discretization methods may easily be extended to other types of elements, 
including linear triangular elements for 2D  domain^'^'^.^^ and tetrahedral elements for 3D  domain^.^ 
The quadrilateral and hexahedral elements and the associated shape functions are defined by 
Zienkiewicz and Taylor.” A typical quadrilateral element is shown in Figure 2 with the local co- 
ordinate system (tl , t2). For the isoparametric basis the origin of the local co-ordinate systemis defmed 
as the average of the element vertex co-ordinates. 

X S m n m  

Figure 1.  Sample computational mesh 
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Figure 2. Parametric cosrdinate system on a sample quadrilateral element 

As shown in Figure 3, nodes are located at the comers or vertices of the elements and a control 
volume is associated with each node. All dependent variables (pressure, velocities, etc.) are calculated 
and stored at the nodal locations. The control volume boundaries are created by dividing elements along 
the lines rl = 0 and t2 = 0. This is known as a dual-median mesh.** As noted by S~hneider?~ this 
choice guarantees the alignment of control volume edges. The boundary of a given control volume is 
defined by a set of discrete surfaces. Each surface forms a boundary between two adjacent control 
volumes and is composed of a number of subsurfaces: two in 2D and four in 3D. The area of each 
surface is the sum of the subsurface areas and the surface unit normal is the area-weighted average of the 
unit normal vectors of the subsurfaces. The integration point for each surface is taken at the midpoint 
along the element edge connecting two adjacent nodes (see Figure 3). 

AA, = A%+ A S  

6, = (A% 6, + A%ii,)l A+ 

ri = z j ~  
r, = r, u r,u r,u rm 

- Element Boundaries 
--- Control Volume Boundarles 

0 * 
Figure 3. Dual-median mesh schematic 

Node and volume integration polnt 
Integration Polnt on Control Surlace 
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2.3. Discretization of governing equations 

General conservation equation 

For each control volume the governing equations are written in integral form as 
The spatial domain is divided into a number of control volumes as defined in the previous subsection. 

where ii is the outward unit normal and A, and I?, denote the domain and boundary of control volume I 
respectively. Equation (3) essentially states that the rate of change within the control volume balances 
the net transport rate across the volume boundaries and production rate within the volume. In the 
discretization procedure the boundary integral is represented by the sum of integrals over the control 
surfaces bounding the volume. The portion of boundary represented by the control surface is denoted by 
rj. Integrals over control volumes and control surfaces are evaluated using single-point quadratures. To 
simplifj. the procedure, the terms in equation (3) will be discretized individually. 

Transient term. The transient term is represented by a first-order backward difference in time 
(implicit Euler scheme) and a lumped m s s  approximation in space: 

where A V, is the volume of the control volume, At is the time step and the subscript I on the other terms 
denotes the node or control volume. The contribution to the global system of discrete equations may be 
written as 

The first term on the RHS represents any implicit dependence of the transient term on the dependent 
variable and the second term represents the explicit portion. The superscripts on the coefficient a denote 
the conservation equation and the respective term (e.g. ‘t’denotes the transient portion). The subscripts 
denote the index of the control volume and the nodal subscript of the multiplying dependent variable 
respectively. The subscripts and superscripts on b follow the same convention. The first-order temporal 
approximation is considered principally because transient solutions are not of primary importance with 
regard to the present work. With some additional complexity in the flow solution algorithm and 
application of boundary conditions, second-order temporal accuracy may be obtained by using 
alternative time discretization schemes. 

Advection term. The advection portion of equation (3) is approximated 

where 
2 

= AAjpjuj . ij 

for a control surface j as 

(64 

and again A Aj is the area of thejth control surface and the integrand is evaluated at the integration point. 
Owing to the physical nature of the advection, the evaluation of the RHS of equation (6a) requires 
special consideration. As outlined in Section 1, workers have employed a wide variety of techniques. 
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Recently the family of high-resolution (HR) flux limiters has received considerable attention owing to 
a number of desirable features: the schemes are bounded, highly accurate (low numerical diffusion) and 
fairly easy to implement. The advective flux at faces of control volumes is calculated using composite 
flux limiters which enforce monotonicity. Darwish’ and Darwish and M ~ u k a l l e d ~ ~  review a number of 
these schemes in terms of the normalized variable formulation. 

In this work a number of HR schemes are extended for unstructured, non-orthogonal grids following 
the approach of Lyra et u I . ~ ~  and Cabello and Morgan26 for 2D, unstructured triangular meshes. To 
facilitate the presentation, a 2D mesh of quadrilateral elements is considered, but the formulation is 
equally valid in three dimensions. As before, control volumes are formed for each element vertex. 
Integration points are located at the midpoints of the element edges as shown in Figure 4 and thus lie 
directly between two nodes. A three-point stencil is formed by introducing a dummy node upstream of 
the integration point as shown by point U in Figure 4. Cabello and Morgan26 placed point U such that 
points U, C and D are located equidistantly along a line formed by the edge. However, for a rapid change 
in cell size this procedure may place the dummy node several cells away from the integration point or 
outside the domain. For this reason, point U was located at a position where the line CD intersects the 
face of the upstream element. The advective flux is then determined using the three-point stencil (UCD) 
and the normalized variable formulation (NVF)27 with a modification for non-uniform grids.24 

Five bounded, high-resolution schemes were considered: Roe’s MINMOD scheme,28 OSHER?’ Van 
Leer’s MUSCL3’ and CLAM3’ schemes and Gaskell and Lau’s SMART scheme.32 As noted by 
Darwish,’ the MINMOD scheme is similar to the SOUCOUP scheme of Zhu and R ~ d i . ~ ~  For 
conciseness, only the MINMOD and CLAM schemes are presented here. Descriptions of the other 
schemes may be found in the original references or in Reference 24. 

MINMOD or SOUCOUP 

if = Jc, elsewhere. 

Node 4 Dummy nade X integration Point 

Figure 4. Location of upstream dummy node 
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The normalized variables, denoted with tildes, are defined as 

The value of the dependent variable for the flux expression is obtained from the normalized face value 
and equation (9): 

The flux term is applied using a deferred correction technique to reduce the stencil of the discrete 
equations. In this technique the advective flux is written as the sum of a first-order upwind term and a 
second term which provides higher accuracy. The first-order upwind term is treated implicitly, while the 
correction term is treated explicitly and placed in the source term. The procedure guarantees that the 
discrete system of equations is diagonally dominant-a very important feature for iterative solvers. In 
addition, the compact implicit stencil reduces both the storage requirements for coefficients and the 
computational requirements for the solution of the equations. These advantages are gained at the 
expense of making the equations more explicit, which may necessitate more global iterations or time 
steps. 

Returning to the control volume in Figure 3, a contravariant velocity is assumed between nodes Z and 
J such that nodes J and I correspond to nodes C and D respectively. The expression for the dependent 
variable at the face or control surface, q5f, may be substituted into equation (6a) to form the advection 
contribution for control surface j: 

@24) * 2 dT = C'4f = Cj4j + Cj(+f - 4j). (11) 

By treating the last term in equation (1 1) explicitly, the equation may be recast as 

(~24)  * ii dT = .$"4j - b?.". I, 
A similar expression may be written for a velocity in the opposite direction. 

Difision term. The diffusion portion of equation (3) is approximated for a typical control surface j as 

-r v4. ii d r  = -(r AA v4 . iilj, (13) J, 
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where A Aj is the area of the control surface and all other quantities on the RHS are evaluated at the 
surface integration point. The gradient at the surface integration point is expressed in terms of the 
elemental basis functions and the nodal values of the dependent variable. By substituting this gradient 
expression and simplifying, equation (1 3) may be written as 

where the fmt and second terms on the right-hand side represent the orthogonal and non-orthogonal 
portions of the diffision term respectively. The superscript 'd' denotes the diffision contribution to the 
global system of equations and the other subscripts and superscripts are defined as before. The non- 
orthogonal term is treated explicitly to reduce storage and computational requirements. 

Source term. The last integral in equation (3) is approximated for a typical control volume as 

The evaluation of the source Sd is made at the node of the control volume (i.e. lumped mass 
approximation). The contribution to the global system of equations is 

where the fmt and second terms on the RHS represent the implicit and explicit portions of the source 
term respectively. 

Assembled equations. The previous subsections have defined the discrete representations to the 
various terms in the control volume integral equation. By considering all contributions, the discrete 
conservation equations may be expressed as 

(17) dJ 0 + a$)41 + a$4J = bf f 41, 
I* 

where 

b," = b?'' + bfpa + bpS.  

The summation extends over global nodes with non-zero coefficients. 

Momentum conservation equations 

subsection. The vector control volume equation is 
The momentum conservation equations are discretized using the procedures of the previous 
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Each component of the above equation represents a respective component of the vector momentum 
equation. The component momentum equations are in the form of equation (3) and the terms have 
previously been discretized, with the exception of the pressure term which is approximated using the 
surface quadrature 

Jrj pi d r  = A A,pjii. (20) 

The pressure at the integration point on control surfacej is evaluated using the nodal pressures and basis 
functions. In the present work a segregated solution method is used and thus the pressure gradients are 
treated explicitly with respect to the momentum equations: 

The discrete momentum equations may be expressed as 

where the coefficients and constants follow the previously defined convention. 

Mass conservation equation 

A control volume equation for the conservation of mass may be written as 

If a temporally invariant density is assumed, the first term may be neglected. For a typical control surface 
the second integral approximated as 

where the subscript j denotes the jth surface. By considering all surfaces of a control volume, the 
discrete continuity equation may be expressed as 

where the summation extends over all surface integration points on the boundary of the control volume 
and the superscript ‘c’ denotes the continuity equation. The above representation involves velocities at 
the integration points in contrast to values at the nodes. 

The coupled mass and momentum equations are solved with a projection method. The following 
subsections detail the interpolation scheme needed to close the system of discrete equations and the 
overall flow algorithm respectively. 
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2.4. Pressure-velocity coupling 

The discrete equations (22a), (22b) and (25) are not in closed form because they contain more 
unknowns than equations; they contain velocities at both the control volume faces and control volume 
centres. To close the equations, the face values must be expressed in terms of the nodal values. 

The face velocities are calculated using a form of Rhie and Chow interp~lation.’~”*~* This method 
effectively couples the pressure and velocity fields and eliminates checkerboard pressure solutions. The 
unstructured grid formulation follows the work of Prakash and Patankar.20 

After some rearrangement the discrete momentum equations (22a) and (22b) may be written in the 
form 

where 

A VI D, = --, 
Y I  

The superscript 0 denotes values from the previous time step or iterate. The sum of the neighbour 
coefficients in the y-term only include contributions from advection and diffision, which are the same 
for all components of the vector momentum equation. This sum is a positive quantity, since the implicit 
neighbour coefficients are negative (note the sign convection for coefficients). The implicit portions of 
the sources are grouped into the H-term. 

By following the approach of M a s h  and Patankdo and an extension of Majumdar,” the velocities 
at the surface integration points are expressed as 

A 

(28) -0 u i  = H i  + Di Vp, + & u i  . 
The integration point values Hi, Di , and pi are obtained from linear interpolation of the nodal values, 
while the pressure gradients are calculated using the nodal pressures and the local gradients of the basis 
functions. Equation (28) closes the discrete continuity and momentum equations. 

2 

A 

2.5. Flow solution algorithm 

The discretized mass and momentum equations are solved in a segregated approach using a standard 
projection method, the SIMPLE algorithm.34 Other schemes may equally be used, including the 
pseudocompressibility combinations of projection and pseudocompressibility techniques16 
and fully coupled methods. The projection method was selected because it conserves mass at each time 
step or iteration and requires substantially less storage than coupled, implicit algorithms. 
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The pressure correction equation is derived following a procedure of H i r s ~ h ~ ~  and Watters011.~ The 
semidiscrete form of the vector momentum equation is considered: 

--L 

#") = -v. (pG @ ;;)" - Vp" + v. f", 
p ( 2  - 

At (29) 

where n denotes c%nditions at the beginning of the time step and the asterisk refers to intermediate 
values. The value u* represents the intermediate velocity field after the solution of the momentum 
equations, which generally will not satisfy continuity. Corrections to the velocity and pressure fields, 

(30) -* - A 

#"+l = 24 + # I ,  

p"+l = p" + p', (31) 

v. pu"+l = 0, (32) 

are sought such that the final values at n + 1 satisfy both the continuity and momentum equations: 
2 

The relationship between the velocity and pressure corrections is obtained by subtracting equation (29) 
from (33): 

A 2 

p(;;*+' - u * )  = pu' = -At Vp'. (34) 

The pressure correction equation may be derived by taking the divergence of the above equation and 
substituting equation (32): 

-V * (AtVp') = -V * p G * .  (35) 

The RHS is simply the defect in the continuity equation due to the intermediate velocity field. The 
pressure corrections provided by this equation may be used to correct the pressms and velocities using 
equations (3 1) and (34) respectively. The resulting pressure and velocity fields will satisfy the mass and 
momentum equations (32) and (33). 

The spatially discrete form of the pressure correction equation is obtained using the finite volume 
method. The integral form of the pressure correction equation is 

This equation may be written in discrete form as 

c 4;;P;=& 
J 

(37) 

where the coefficients are calculated using the basis functions, the local time step and geometric 
considerations. The RHS is the discrete mass defect: 

The summation extends over all surface integration points on the boundary of the control volume. 
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The velocities at the control surfaces and nodes are corrected using discrete forms of equation (34): 

where G represents the discrete gradient operator. The nodal pressures are updated using equation (3 1): 

pF+' = p; + a&, (41) 

where ap represents pressure relaxation. 
The solution algorithm is summarized as follows. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

Initialize the pressure and velocity fields p" and 2. (assyne uniform pressure). 
Solve the momentum equations for the nodal velocities u *. 
Interpolate the nodal velocities to the faces using Rhie and Chow interpolation. 
Solve the pressure correction equation for p'. 
Calculate pn+' by adding p' to p". 
Calculate the velocities at the nodes and faces from the velocity Correction equations. 
Solve any scalar transport equations. 
Take the corrected pressure field 
convergence is obtained (e.g. return to step 2). 

as the assumed field p" and repeat the procedure until 

The above procedure is a single-stage time step scheme; however, the scheme may be extended to 
multiple stages as shown by Watters~n.~ 

Steady state solutions were of prime importance with regard to the current work and a spatially 
varying time step was applied to speed convergence: 

JU 

where E represents the E-factor of Van Doormaal and Raithb~.~' The E-factor is analogous to the CFL 
number for high cell Peclet numbers and is related to the standard relaxation parameter by 

Y 

The discrete momentum and pressure correction equations form systems of linear, algebraic 
equations. These systems are solved individually with an algebraic rnultigrid solver which is based on 
the work of Hutchinson and Raithby3* and Ruge and Stiiben?' The non-orthogonal terms in the discrek 
pressure correction equation are treated semi-implicitly-they are updated on the finest level of the 
multigrid algorithm. This procedure is required to provide convergence on highly non-orthogonal grids. 
The above algorithm is equally applicable to three-dimensional geometries. 

3. RESULTS 
A number of standard benchmark cases were investigated to study the accuracy of the present algorithm, 
to test the sensitivity of the predictions to the differencing schemes and to determine the effect of the 
differencing scheme and deferred correction procedure on global convergence. The cases include a lid- 
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dnven cavity, flow through a gradual expansion and laminar flow in a three-dimensional curved duct of 
square cross section. The cases were selected because they have been extensively studied in the literature 
and benchmark solutions are available. 

All predictions were made with E-factors and pressure relaxation values of approximately 3 and 0.8 
respectively. Solutions were assumed to be converged when the average, steady state, momentum 
residuals had decreased by five orders of magnitude over the initial residual values. Mass residuals were 
not used to monitor convergence, because the projection method in conjunction with the algebraic 
multigrid solver drove the mass imbalances to near round-off for each global iteration or time step. For 
all cases, grid-independent solutions were obtained. 

3.1. Lid-driven cavityJIow 

The first test case involves laminar flow in a square cavity which is driven by a moving lid. This is a 
standard problem to test the accuracy and convergence characteristics of fluid flow a l g o r i t h ~ n s . ' ~ ~ ~ ~ * ~ ~  
The geometry is square (LJL, = 1). At the bottom, left and right boundaries the velocity is constrained 
to zero, while a uniform horizontal velocity is imposed at the top boundary. The present case was based 
on a Reynolds number of 400. 

A number of grids and differencing schemes were considered. The grids included 20 x 20,40 x 40 
and 80 x 80 uniform discretizations. The differencing schemes included MINMOD, OSHER, MUSCL, 
CLAM, SMART and UPWIND. Predictions from the current algorithms were compared with 
predictions of Ghia et ~ 1 . ~ ~  and predictions from a cell-centred, finite volume code with a hybrid 
differencing scheme (FVM-CC). The Ghia et al. results are from a 129 x 129 uniform grid. All 
comparisons were made using the normalized horizontal velocity at the vertical centreline. 

Figure 5 compares results for the SMART scheme for a number of different grids. As the grid is 
relined, the present predictions approach those of Ghia et aL4' Results for the 40 x 40 and 80 x 80 grids 
are nearly identical, indicating that the 80 x 80 solution is essentially grid-independent. Figures 6(a) and 
6 0 )  contrast the various differencing schemes for the 40 x 40 discretization. As seen in Figure 6(a), all 
the high-resolution schemes yield accurate solutions, with no scheme performing better or worse than 
another. In contrast, Figure 6(b) displays the diffusive nature of the upwind and hybrid schemes. As 
expected, the upwind scheme is the most difksive, while the hybrid scheme lies between the upwind 
and high-resolution schemes. The predictions of the HR schemes (MINMOD, MUSCL, OSHER, 
CLAM and SMART) compare very favourably with predictions of other workers. The solutions for the 
40 x 40 grid are very close to the grid-independent solutions obtained by Ghia et al. using a vorticity- 
streamfunction approach. 

The global convergence rates for the 40 x 40 grid are shown in Figure 7. All HR schemes have very 
similar convergence histories. The UPWIND scheme converges slightly better than the high-resolution 
schemes; however, the increased accuracy of the HR schemes more than offsets the slight increase in 
computational costs. For the cavity case the differences between convergence histories are solely due to 
the advection differencing scheme and deferred correction procedure, because the grid is orthogonal and 
thus all discrete Laplacian operators are treated implicitly. 

3.2. Flow through a gradual expansion 

Flow through a gradual expansion was considered. This benchmark case was developed by R ~ a c h e ~ ~  
and was later adopted at the Fifth Meeting of the International Association for Hydraulic Research 
(IAHR) Working Group on Refined Modelling of The geometry for the problem is shown in 
Figure 8 and is dependent on the Reynolds number. Two Reynolds numbers, 10 and 100, axe considered. 
The axial inlet velocity profile is parabolic, while the inlet transverse velocity is zero. 
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Figure 5. Sensitivity of solutions to grid refinement for driven cavity case 

For both Reynolds number flows, grid dependence was investigated by performing calculations on 
successively finer grids: 20 x 10,40 x 20 and 80 x 40. The 40 x 20 grid for the Re = 10 case is shown in 
Figure 1. Grid sensitivity is investigated in Figure 9 for a Reynolds number of 100. Variations are 
evident in the 20 x 10 grid solutions near the inlet, but the solutions of the 40 x 20 and 80 x 40 grids are 
nearly coincident, with a maximum difference of 1.6%. Excellent agreement is shown with the 
benchmark solution of Cliffe et al. as reported by Napolitano and Orla11di.4~ 
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Figure 6. Comparison of horizontal velocity for driven cavity case (x = 0.5) 
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Figure 9. Sensitivity of predicted wall pressure to grid refinment for gmdual expansion case 
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Figure 10. Comparison of predicted wall pressure for gradual expansion case 

The sensitivity of the solutions to the differencing scheme is displayed in Figure 10. Results are 
shown for the upwind and four HR schemes. For both Reynolds numbers the predictions from the HR 
schemes are similar and very close to the benchmark solutions, while the upwind predictions are less 
accurate. The relative accuracy of the solutions is quantified by the error norm 

where pi  is the predicted pressure at a number of evenly spaced points on the wall and pCJG,i is the 
assumed grid-independent solution of Cliffe et al. The results are compared with those of other workers 
in Table I. The present predictions show excellent agreement with the benchmark of Cliffe et al. 

Table I. Comparison of error for gradual expansion case (Re = 100) 

Investigator(s) Methodb EP(%)C 

Present" 
Alfrink 
Demirdzic and Gosman 
Grandotto 
Goussebaile et al. 
Guj and Faviani 
Hutton 
Latrobe and Delapierre 
Magi and Napolitano 
Porter et al. 

FV 
FV 
FV 
FE 
FD 
FD 
FE 
FV 
FD 
FD 

0.69 
10.02 
6.77 
143 

17.61 
2.71 
1 .so 

12.31 
33.45 
7.15 

a SMART scheme, 40 x 20 grid. 

' Data reported by Napolitano and Orlandi.43 
FD, finite difference; FE, finite element; FV, finite volume. 
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3.3. Laminarjow in a curved duct 

Three-dimensional laminar flow in a curved duct of square cross-sectiona was considered. The case 
is a standard benchmark case for three-dimensional internal f10ws.40~a~45 The geometry and actual 
operating conditions are documented by Humphrey et a1.44 The Reynolds number based on the 
hydraulic diameter and bulk velocity is 790. 

The physical domain was represented individually by a number of computational grids: 20 x 10 x 60, 
28 x 14 x 84 and 40 x 20 x 120. The coarsest grid (20 x 10 x 60) is shown in Figure 11. Owing to 
symmetry, only one half of the physical domain was modelled. The computational domain started at five 
hydraulic diameters upstream of the bend and continued for five hydraulic diameters downstream of the 
bend. A filly developed velocity profile was assumed at the inlet of the domain. 

The predictions are compared with experimental dataa in Figure 12. Comparisons are made at five 
longitudinal locations: x = -2.5Dh, 0 = o", t? = 30°, 0 = 60" and 0 = 90deg. At each location the 
velocity profiles are plotted along two lines: z/Dh = 0 (centreline) and z/Dh = 0.25. The strong 
curvature of the duct generates a strong secondary flow, due to centrifugal forces and adverse and 
favourable longitudinal pressure gradients at the inner and outer radii respectively. The predictions 
compare well with the data at all locations. Similar results were obtained by Choi et al.," Rosenfeld et 
al.45 and Rogers et al? The sensitivity of the predictions to the differencing scheme is shown in Figure 
13 for the 28 x 14 x 84 grid at one location. The SMART scheme performs best. The MINMOD scheme 
is slightly less accurate, but this may be expected since the MINMOD scheme is second-order in the 
monotonic range while the SMART scheme is third-order. The first-order upwind scheme again exhibits 
large amounts of numerical diffusion. The convergence histories for the three considered schemes are 
shown in Figure 14. The convergence rate is good for all schemes, with that of the upwind being better 
than those of the two HR schemes. 

Figure 1 1. Computational grid for curved duct case (20 x 10 x 60) 
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GLOBAL ITERATKM 

Figure 14. Residuals for curved duct case 

4. CONCLUSIONS 

A non-orthogonal, finite volume algorithm for the solution of the incompressible Navier-Stokes 
equations has been presented. High-resolution differencing schemes were incorporated to provide 
bounded solutions with low numerical diffusion. A form of Rhie and Chow interpolation was employed 
to ensure coupling of the pressure and velocity fields. The mass and momentum equations were solved 
using a projection method to guarantee conservation of mass during each step of the algorithm. The 
inclusion of the non-orthogonal terms in the discrete pressure Poisson equation was found to be crucial 
with highly non-orthogonal grids. 

A number of standard benchmark cases were investigated. Grid-independent solutions were obtained 
for all cases. The high-resolution schemes produced much more accurate solutions than the first-order 
schemes. The cavity and gradual expansion cases indicated no clear preference among the high- 
resolution schemes themselves with regard to accuracy; however, for the curved duct case the third- 
order SMART scheme produced a more accurate solution than the second-order MINMOD scheme. 
The high-resolution schemes in conjunction with the deferred correction procedure slightly degraded 
the global convergence of the steady state equations compared with the upwind scheme. Nevertheless, 
the increased computation time is quite insignificant compared with the increased accuracy of the high- 
resolution schemes. Alternative time discretization and linearization methods may improve the 
convergence rates. 

Although all test cases employed structured grids, the present algorithm is applicable to unstructured 
meshes of quadrilateral and hexahedral elements. Future work will focus on implementing turbulence 
and chemical reaction models and adding triangular and tetrahedral element capabilities. 

APPENDIX: NOMENCLATURE 

a 
AA area 
b 
C, D, U 
D 

coefficient of discrete transport equation 

constant term in discrete transport equation 
nodal indices for advection stencil 
pressure gradient coefficient in discrete momenum equation 
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E 
F', GI 
F ~ ,  G~ 
H 
i ,  j 
1, J 
n 
P 
Q 
Re 
S 
t 
U 
U 
U 

V 
AV 

Y 

V 

X 

Greek letters 

o! 

P 

r 
Y 

A 

A 
t 

P 
4 

E 

z 

Subscripts 

f 
I , J  
.i 
P 

Y 
X 

Superscripts 

0 
a 
C 

E-factor 
inviscid fluxes 
viscous fluxes 
portion of discrete momenum equation 
unit vectors in x- and y-direction, respectively 
nodal indices 
unit normal vector 
pressure 
dependent variable vector 
Reynolds number 
source term 
time (s) 
vector velocity (m s-') 
face x-direction velocity (m s-I) 
x-direction velocity (m s- I) 

face y-direction velocity (m s-') 
y-direction velocity (m s- ') 
volume (m3) 
spatial co-ordinmate (m) 
spatial co-ordinate (m) 

relaxation factor 
coefficient in discrete momentum equation 
term in discrete momentum equation 
diffusion coefficient; spatial domain boundary 
difference operator 
error 
spatial domain 
local parametric co-ordinate 
stress tensor 
density (kg m-3) 
general transport variable 

face value 
nodal indices 
face or control surface index 
pressure 
x-direction 
y-direction 

previous iterate or time step 
advection 
continuity equation 
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d 
n 
P 
P’ 
S 

t 
u, v 
U 
V 
4 
I 

* 

Special symbols 

V 
2 

A - 

diffusion 
time step or iterate index 
pressure 
pressure correction equation 
source 
transient 
face velocities 
x-direction momentum equation 
y-direction momentum equation 
general transport equation 
correction 
intermediate value 

nabla, gradient vector 
vector 
unit vector 
normalized quantity 
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